92 research outputs found

    622. Oncolytic Adenoviruses Loaded With Active Drugs as a Novel Drug Delivery System for Cancer Therapy

    Get PDF
    L-carnosine (β-Ala-His) is a naturally occurring histidine dipeptide, normally found in brain, kidney and in large amounts in muscle. L-carnosine has biological functions, including antioxidant activity, ability to chelate metal ions, as well as anti-inflammatory and anti-senescence properties. Recent studies have demonstrated that 50-100 mM of L-carnosine decreases cell proliferation in a colon cancer cell line HCT116, bearing a mutation in codon 13 of the RAS proto-oncogene. In addition, pre-treatment with L-carnosine decreases the intracellular concentration of Adenosine Triphosphate (ATP) and Reactive Oxygen Species (ROS) and inhibits the cell cycle progression in the G1 phase. The proto-oncogene KRAS is mutated in a wide array of human cancers and is important both in tumour progression and resistance to anticancer drugs. To overcome treatment limitations due to the high intracellular concentration required we have hypothesized that L-carnosine can be conjugated on the capsid of oncolytic viruses. Oncolytic viruses are viruses that are able to replicate specifically in and destroy tumor cells and this property is either inherent or genetically-engineered. The association of viruses with specific drugs, would increase the efficacy of the treatment of human neoplasia due to the synergistic action of virus and drug. First we have developed a strategy to conjugate peptides on viral capsid, based on electrostatic interaction. Then, using different cancer cell lines we found that oncolytic virus coated with L-carnosine with a tail of positively charged polylysine was able to enhance a positive anticancer synergistic effect. Finally, in order to investigate the molecular mechanisms underlying the effect of tumor reduction by oncolytic virus coated with modified L-carnosine, we have used three different approaches. First, we have examined, in samples with virus alone, or in combination with L-carnosine, the oncolytic replication by evaluating the E1A expression, second the apoptotic mechanism by expression of specific genes and at end the autophagy regulation via the amount of LC3-II. In conclusion, we have developed a model to use oncolytic adenovirus as a scaffold to deliver active drugs. Once validated the proposed model could be used as a novel drug delivery system for cancer therapy

    Oncolytic adenovirus loaded with L-carnosine as novel strategy to enhance the antitumor activity

    No full text
    Oncolytic viruses are able to specifically replicate, infect, and kill only cancer cells. Their combination with chemotherapeutic drugs has shown promising results due to the synergistic action of virus and drugs; the combinatorial therapy is considered a potential clinically relevant approach for cancer. In this study, we optimized a strategy to absorb peptides on the viral capsid, based on electrostatic interaction, and used this strategy to deliver an active antitumor drug. We used L-carnosine, a naturally occurring histidine dipeptide with a significant antiproliferative activity. An ad hoc modified, positively charged L-carnosine was combined with the capsid of an oncolytic adenovirus to generate an electrostatic virus-carnosine complex. This complex showed enhanced antitumor efficacy in vitro and in vivo in different tumor models. In HCT-116 colorectal and A549 lung cancer cell lines, the complex showed higher transduction ratio and infectious titer compared with an uncoated oncolytic adenovirus. The in vivo efficacy of the complex was tested in lung and colon cancer xenograft models, showing a significant reduction in tumor growth. Importantly, we investigated the molecular mechanisms underlying the effects of complex on tumor growth reduction. We found that complex induces apoptosis in both cell lines, by using two different mechanisms, enhancing viral replication and affecting the expression of Hsp27. Our system could be used in future studies also for delivery of other bioactive drugs. Mol Cancer Ther; 15(4); 651-60. ©2016 AACR

    659 oncolytic adenovirus loaded with bioactive modified peptide as a novel approach to treat cancer

    Get PDF
    Cancer is still a leading cause of death worldwide. Although many kinds of treatment have been developed during the past decades, there is still a lack of effective therapy for advanced cancer. Currently treatments such as surgery, chemotherapy and radiotherapy can help to improve patient prognosis and increase patient life expectancy. Therefore new treatment strategies against cancer are in high demand. Efficient anticancer agent and its targeted delivery into the tumor mass is a key prerequisite for the successful cancer therapy. Oncolytic virotherapy is emerging as a potential approach to treat cancer, using viruses, which are specifically engineered to selectively infect, replicate in and kill cancer cells without causing damage to normal cells. Their combination with chemotherapeutic agents have shown promising results due to the synergistic effect of viruses and drugs; therefore the combinatorial therapy is considered a beneficial approach for cancer treatment. Taken into account these considerations we optimized a strategy to conjugate peptides on the viral capsid, based on electrostatic interaction and used this strategy to deliver an active anti-tumor dipeptide. We used L-carnosine, a naturally occurring histidine dipeptide with anti-proliferative activity. A modified L-carnosine, positively charged was absorbed onto the viral capsid of an oncolytic adenovirus to generate a virus-carnosine complex. The complex showed enhanced anti tumor efficacy in vitro and in vivo and higher infectious titer compared to a naked oncolytic adenovirus in colorectal and lung cancer cells. The in vivo efficacy of the complex was analyzed in lung and colon cancer xenograft models, displaying a significant reduction in tumor growth and synergistic effect between virus and dipeptide. Moreover, we studied the molecular mechanisms underlying the effects of complex on tumor growth reduction. Complex can induce apoptosis in both cells lines, by using two different mechanisms, enhancing viral replication and affecting the expression of Hsp27. Our system could be used in further studies also for specific delivery of other active drugs

    Polydatin Reduces Cardiotoxicity and Enhances the Anticancer Effects of Sunitinib by Decreasing Pro-Oxidative Stress, Pro-Inflammatory Cytokines, and NLRP3 Inflammasome Expression

    Get PDF
    Renal cell carcinoma (RCC) represents the main renal tumors and are highly metastatic. Sunitinib, a recently-approved, multi-targeted Tyrosine Kinases Inhibitor (TKi), prolongs survival in patients with metastatic renal cell carcinoma and gastrointestinal stromal tumors, however a dose related cardiotoxicity was well described. Polydatin (3,4',5-trihydroxystilbene-3-beta-d-glucoside) is a monocrystalline compound isolated from Polygonum cuspidatum with consolidated anti-oxidant and anti-inflammatory properties, however no studies investigated on its putative cardioprotective and chemosensitizing properties during incubation with sunitinib. We investigated on the effects of polydatin on the oxidative stress, NLRP3 inflammasome and Myd88 expression, highlighting on the production of cytokines and chemokines (IL-1 beta, IL-6, IL-8, CXCL-12 and TGF-beta) during treatment with sunitinib. Exposure of cardiomyocytes and cardiomyoblasts (AC-16 and H9C2 cell lines) and human renal adenocarcinoma cells (769-P and A498) to polydatin combined to plasma-relevant concentrations of sunitinib reduces significantly iROS, MDA and LTB4 compared to only sunitinib-treated cells (P<0.001). In renal cancer cells and cardiomyocytes polydatin reduces expression of pro-inflammatory cytokines and chemokines involved in myocardial damages and chemoresistance and down-regulates the signaling pathway of NLRP3 inflammasome, MyD88 and NF-kappa B. Data of the present study, although in vitro, indicate that polydatin, besides reducing oxidative stress, reduces key chemokines involved in cancer cell survival, chemoresistance and cardiac damages of sunitinib through downregulation of NLRP3-MyD88 pathway, applying as a potential nutraceutical agent in preclinical studies of preventive cardio-oncology

    Observation of Cosmic Ray Anisotropy with Nine Years of IceCube Data

    Get PDF

    Design of an Efficient, High-Throughput Photomultiplier Tube Testing Facility for the IceCube Upgrade

    Get PDF

    Multi-messenger searches via IceCube’s high-energy neutrinos and gravitational-wave detections of LIGO/Virgo

    Get PDF
    We summarize initial results for high-energy neutrino counterpart searches coinciding with gravitational-wave events in LIGO/Virgo\u27s GWTC-2 catalog using IceCube\u27s neutrino triggers. We did not find any statistically significant high-energy neutrino counterpart and derived upper limits on the time-integrated neutrino emission on Earth as well as the isotropic equivalent energy emitted in high-energy neutrinos for each event

    The Acoustic Module for the IceCube Upgrade

    Get PDF
    corecore